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We discuss the computational aspects of a porous flow past a reacting solid undergoing
pyrolysis. We present governing equations and develop an accurate numerical method for
their solution. The algorithm accurately calculates the rapidly varying component and
uscs a fixed step size commensurate with the smoothly varying component of the solution.
The resulting nonlinear equation is solved with Newton’s method; the linear system is
solved using a discrete analog of the invariant-imbedding method for second-order, linear,
two-point boundary-value problems. We also develop a criterion for truncating the com-
putational domain to minimize the calculational effort, and we preseat some typical cal-
culations showing that the scheme is accurate and efficient.

INTRODUCTION

Energy resource recovery processes such as oil shale retorting and coal gasification
belong to the class of chemically reacting, porous-medium flow phenomena. Inherent
in these phenomana arc problems that arisc from the disparate time scales of the
physical and chemical processes. We have developed a one-dimensional mathematical
model [1] that simulates the chemico-physical processes involved in concurrent vertical
retorting of rubblized oil shale.

The processes are modeled by a set of stiff differential equations. (Such a system is
considered stiff on some interval if a component of the solution cxists that rapidly
varies within the interval. [2])

Work continues on this model, which is intended to be a comprehensive retorting
model that includes all of the important chemico-physical processes.

To illustrate the basic difficulties and the current techniques for solution, we con-
sider the numerical solution of a simplified rctorting problem. In the simplified
problem, part of the solid material (3) undergoes thermal decomposition at elevated
temperaturcs or pryolysis to form a gaseous effluent (G,) and a solid residue (Sj).
The physical processes involved are axial convective transport of energy and mass from
the bulk gas flow, the effective axial conductive transport of heat, and heat transfer
between the gas stream and the solid.

Solving the governing equations with our numerical method results in a nonlinear
system of equations. The nonlinear equation is solved with Newton’s method and the
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n

linear system with a discrete analog of the invariant-imbedding method for second-
order, linear, two-point boundary-value problems. This approach was inspired by a
lecture of G. H. Meyer on using invariant-imbedding algorithms in free-boundary

problems.
GOVERNING EQUATIONS

The governing equations for the simple retorting problem are:

The energy equation for the solid:

cT 3 . :
psCs T “r—o* (T, — T) — kS, (O

The solid species continuity equation:

oS
A )
% kS. 2
The energy equation for the gas:
o , 8T, _ .. 0T, | 3hx , ,
k5 = CG 2 4 - (T, —~ 1) 3)
The gas species continuity equation:
= (4
e fikS. (4)

Here, T is the solid temperature, S is the reacting species, T, is the gas temperature,
and Gj is the gascous reaction product.
Augmenting the governing equation, we have the following subsidiary relations:

G =0G,+ Gy,

C = (T,

h = K(T,),

p=po+ S,
Cs = C«(T),

k = k(T) = de~5/T,

where A and E are constants. Here, G is the superficial gas-flow rate, C is the specific
heat of the gas, & is the heat-transfer coeficient, p is the density of the solid, Cs is
the specific heat of the solid, p, is the density of the nonreacting solid, and G is the
input superficial gas-flow rate.
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Initial conditions for the problem are
S(z, 0) = Sy(2) and T(z, 0) = T(2), 0 <z <L

boundary conditions are

k, ¢T,
70, 1) — <G —o"‘zi 0, 1) = g(1),

oT,
°z

G(0,1) =0, ¢>0.

(L, t) = 0,

We see from these equations that the gas-solid heat-transfer process constitutes
one of the characteristic time scales of interest. At low temperatures, this is the domi-
nant phenomenon. As temperature increases, pyrolysis occurs and the pyrolysis-
reaction rate becomes comparable to the heat-transfer rate, surpassing it at higher
temperatures. With large reaction rates, only a small amount of reactant remains.
Because of the form of the reaction-rate expression, the decomposition occurs over a
very narrow temperature range. The temperature variations (both solid and gaseous)
are smoother than that of the solid species profile. Disparate scales of variation occur
in the solution, creating a stiff system of partial differential equations in the sense
Miranker [2] described.

An obvious implication of the theory of numerical solutions for stiff, ordinary
differential equations is that a stiffly stable algorithm with dynamic step-size control is
required to integrate the equations if strict accuracy is to be maintained. Dynamic
step-size control in space and time can be most difficult to implement.

In this paper, we develop a scheme that uses a fixed step size commensurate with
the smooth temperature variation and yet calculates accurately the rapidly varying
species profile. In the next section, we develop a nonlinear discretization of Eq. (2)
(in contrast to a linear multistep method) that relates accurately the rapidly varying
species concentration to the smoother solid temperature change. In so doing, the stiff
aspect of the problem is eliminated in that the reduced problem is concerned with
calculating the smoothly varying gaseous and solid temperature profiles.

In developing the nonlinear discretized analog of the species continuity equation,
we take advantage of the form of the equation and of the interpolation property of the
smoothly varying temperature profile. An error estimate is also derived.

DISCRETIZATION OF SPECIES CONTINUITY EQUATION
To begin, consider the integration of the first-order rate equation

7

= = —k(1)S (5)
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for
tel, = (tna, ta), given S(f,_,) = 5™,

Formally, we have

~t
n oy =—| DK, <,

with &(T) == Ae~E/T. If T(¢) is invertible, i.e., ¢ =: f(T), then
T
W _ [

d . .
:5;7:_1 = k(T) 'd—;, dr for 7" ' << T < T™

v‘[‘"_l
Suppose, T(¢) has a linear interpolation for r € 1, , i.e.,

7 — -1 . o
— —_ (t — tn _‘) - O[(tn - Zﬂ -1)-]’

n n—1

T(f) = Tt -+

then the integral on the right may be evaluated via the exponential integral

E(z) = [m x-te=* dx
to yield
™ dt
[TH K(T) g dT
= ALT{T"/‘(T"') — T k(T %) — AE[E(E/T™) — E(E/T"HY,
where

T =1y =ty and AT = T - Tn L,
The solution of Eq. (5) is then

Sn = Saoyexp{—(t, — i ) I(T", T+7),4T
where, for convenience, we have set

I(Tm, TnY) = Tok(T™y — T (T — AELE(E/T™) — E(EITn Y1,

77

{6)

(N

(8)

‘rom the derivation, we see that the accuracy of the integration of Eq. (1) depends
entirely upon the extent to which 7(¢) may be approximated by a linear function for

te I, . The error estimate is summarized as follows:

THEOREM.  Suppose T(t) has a linear interpolation for t, <t << t, such that

"

: ar T
T() = To -+ == (0 — 1) + 55 (1 — 1)t — 1),
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where
Ti = T(ti)’ i = 0, 13
TZ* - T”(tc), [0 < tC < tl ,
then for
7'27-,/; E Tl _+ TO )
2 AT (AT)[I + 25_] <1
t . TZTZ E
ft k Ty dt = —= 1Ty, Ty) %1 FIT(E
(Tt T 1/ T+ T,
X [1 ' ( 2E )[le(Tl) = Tok(To)] ~ 5 (1 + __E__)

b

X AE[E(EITy) — E(E/T)I|/I(Ty, Ty) + O(%)

where
Ef(2) — f " e dit.
z

The proof of the theorem mimics the error analysis for steepest descent methods.
(See Olver [3]) Higher-order methods can be generated with a higher-order inter-
polation for 7(¢), but the price paid is the computation of the incomplete gamma
functions that result.

An integration procedure of this type, Eq. (5), has been proposed by Dennis [4]
for integrating ordinary differential equations possessing exponential-type solutions.
We must also include the exponential fitting methods [2, 5, 6] in this category. The
integral

[ " k(T) dt

Yiha

is numerically troublesome because of the form of k(7). This recognition is new and
contributes to the state of the art. For computational purposes, we use a rational
approximation for the exponential integral E,(x), [7], i.e.,

x2 -+ ax + ay .
Xtax+a €(x),

xe*Ey(x) = x2 4+ bx +b,
where

a, = 2.334733, b, = 3.330657,

a, = 0.250621, b, = 1.681534,
and

le(x) <5 x 105  for 1 <x<X
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The term I(T™, 771 may be rewritten as

1 . , )
Tn — a1 {T"k(T™) E{(E[T™) — T*%(T"Y) Ey(E/ T 1)}, 9}
where

0.995924x 4 1.430913
x% 4 3.33065x 4 1.681534 °

E1(x)

This formula will be used for later discussion.

FORMULATION OF THE DIFFERENCE SCHEME AND THE COMPUTATIONAL ALGORITHM

Difference Scheme

Our basic difference scheme is the trapezoidal rule, which is formally second-
order accurate. Keller [8] has adopted variants of the trapezoidal rule to study
parabolic equations with great success. The derivation of the difference equation in
this section closely follows Keller’s method.

Consider a partitioning of the domain D ={z, |0 <z << L, 0 < ¢} such that

d; = z; — z; 4, 1 <j<N;
Ty = by — p_1, 1 < n;
with
t, =0 zy = 0, and Zy == L.
Let

3™(z) = Bz, 1),
(DM@ = 7" — D,
¢ HA(z) = 1/2(¢™ + ).
Applying the trapezoidal rule to Eg. (1), we obtain

3 2
(psCs)" 2 DT — D" = o (KT, — TP (10)

By definition,
o) = 5 (CopsTV™ — hS™ — T jry(gpt — oy,

Equation (10) becomes

FiNE) = (psC)"2 T — 3 (Cops)" Tt — IyS™ — 37 jn(1, — Ty — frt =0,
0
n=1,2,. and 0 <z < L. an

581/34/1-6
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Adjoining Eq. (10), we have
S%(z) = S*Y(z) exp[— 7, L(T", T*)/AT), n=1,2,.;
ps" = ps(S™);

(12)
Cs* = Cs(T™);
B = WT,").
In principle, Eqs. (11) and (12) may be solved for 77(z) in terms of T,%(z), i.e.,
TYz) = T, 7% 7277, 8", (13)

After substituting the relation of Eq. (13) into Eq. (3), we have reduced the original
problem to solving a nonlinear, two-point boundary problem for 7,,%(z). This observa-
tion is germane to the development of the computational algorithm to be discussed.

We will now turn to the discretization of Eq. (3). As in Keller, we employ the nota-
tion

‘ﬁjn = ¢)(Zj s tn)a
‘ﬁ?il/z = 1/2(¢J‘n + ‘f’?ﬂ),
D¢ = 47" — $iy).

The trapezoidal rule will be applied to the integration of Eq. (3), which is written as a
system of first-order, partial-differential equations, i.e.,

oT,»
(ke) az - Pn,
” (14)
opP* n 01" 3h 0 o
5 = (€O —— + P T~ — 17,
to yield
F‘&n,i = (ke)j~1/2 Dz—(Tg)Zl - P;L—l/2 == 09 ] = 19 27'“: N (15)

n — n - n 3 7 >
F3; = D, P;" — (CG);(L-UZ D, (Tg)a' - 7?:‘ [h(Tg — D)iarn = 0, J=12,,N.
Similarly, we obtain the following discrete analog of Eq. (4):
Gy, =Gy, + Tfl[(ks)j + (&Sl

G;, appears in Eq. (15) through

G = G, + GI..
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The initial and boundary conditions are
TO=Tyzy), J=0,12,.,N,
T3o -- (C—]G)O Py* = g(t"), (16)

Gy, O,
and
Pyt 0, n=1,2,. .

The initial values {77 ;} are obtained by solving Eq. (14). The boundary values {7,,"}
are computed simuitaneously by combining Eq. (11) evaluated at z = 0 to the interior
set of difference equations. Thus, at a given time level 7, , we have a systera of 4V - 3
cquations [Egs. (11), (12), and (15)] for the variables, S;*, 77, T, j =0, L 2,..., N
and £, j 0, 1,..., N—- 1. This system is reducible by substituting Eqg. (12} intc
Eq. (11) to give 3N 1 2 equations. The problem now is to determine the roots of the
equations

1
Qi) + Ty b b Py
G = B ) (07
F'

where

X' HTM 0 < S NI 0 <)< NP, 0<j < N— 1]

s 1

Using an earlier observation on Eq. (13), the system can be further reduced to
2N ¢ 1 nonlinear equations in the variables {7, ;} and {P;*}. We use Newton’s scheme
to solve these equations.

Newton's Scheme and the Computational Algorithm

Applying Newton's method to the solution, Eq. (17} gives

J(m) AX — _G(?I;)’ (}8)
where

) oG . .

o = (x™m) the Jacobian matrix,
X

AX - x(m-)—l) —_ x(mJ’

m = iteration index.
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Moreover, the Jacobian matrix | has the structure

o
n
O]

AVAN
NN

Clearly, the system of linear equations in Eq. (18) is reducible. By joining the boundary
condition Py™ —= 0 to the reduced set and reordering the variables and the equations,
the reduced problem

Jmdy = —G'mw (19)

is of dimension 2(N <+ 1). The matrix J’ is block tridiagonal with 2 X 2 blocks. Let

u=T,;
and
Dp; = p;".
Then
-Auo— [ F3o )
Apo F3y
Adu, Dy
Axl pu— Au] 5 G o Df—l/‘.’. N
dp; Fen..j—l
A.un DN: 1/2
| 4p ] | 0 |
and
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where we have introduced

L
Ao = (CG)O s
Ky 1

A, = [Z:U _:] J= 1,2 N1

A g T

B, - [‘bf-m 1], j= 1,2, .

Clear discussions of the numerical solution of the linear system in Eq. (19) are
found in Keller [8] and Varah [9, 10]. Keller applied the standard block LU-decompo-
sition algorithm [J1]. Varah extended the block-factorization technique further and
compared its efficiency with the efficiency of band-solving methods when the matrix is
treated as a band matrix. Other methods of solution also exist.

Construction of a factorization method analogous to the method of invariant
imbedding {12, 13] for solving linear two-point boundary-value problems is possible
[14] because:

- Equations (13), (14), and (16) comprise a nonlinear, two-point boundary-value
problem that can be solved by quasi-linearization techniques using invariant imbedding
to find the solution to the linearized problem.

- — The proposed method of solution using Newton’s scheme is just the discrete analog
of the factorization method, and it is reasonable to expect the discrete form of invariant
imbedding to lead to a solution algorithm for Eq. (19).

Moreover, the factorization method induced by invariant imbedding gives a
direct identification of the physical variables. This together with the fact that invariant
imbedding method is an initial-value technique make it most suitable for free-bound-
ary problems [15, 16] and for developing a dynamic domain truncation algorithm to
follow in a later section.

The essential ingredient of the invariant-imbedding method is the Riccati trans-
formation. Its discrete analog applicable to Eq. (19) is

du; = R, dp; - S, , i=0,1,2,.,N (20
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Substituting Eq (20) into (19), we obtain a factorization algorithm, whose forward
sweep is
]

o T eay e ST

Wi=kiap -+ v - [Kia@ae — bian)] Riy s

Ry =2 -+ {lki12 — bigp] Rit}/ Wi,

S = {[bicysy = kiypa] Si 1 — [begnRioy — 1] F2;
+ [y 2Ry + 1] Dy} Wi,

2h

and whose backward sweep‘ is
APN = 05
[kicapRicy -+ 11 dpiy = [reiq0R — 11 Ap; + #4.0/2(S; — S 0) — ais
i=NN-—1,.1L

Equation (20) is then used to compute du, , i =0, 1, 2,..., N.
When the block LU-decomposition algorithm [8] is applied to the solution of Eq.
(19), the forward sweep is

1
& =1, Mo == —(_C—G—)T’ 4y = & — K197 »
0

1 n
8o = — Z(Fzﬂ,o — k1),

1 n
ho = Z [KI/ZF;L.O - fonl]’

€= aiap 1 Kimypléia + biymial/disy
7 = —{l + [€icy = by aeminal/dissds i=12.,N,
4, == & — Ki—1/2Mi »

1
8 =4 [Diae + bixngia — Hiy — MiFy1):
1 n . .
hy = — a4 {ris1alDicase + biapgia — hial + EFoia)y T=1,2,, N —1,

1
& = 7~ [(Dn_1r2 + bn—1/28N—1 — Ana)s
N

hN=03
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and the backward sweep 1s

AHN = Ag‘\; ) A[)N = hN == O,
Au; = g; — il iy — Apiaalid;
Ap; = h; + Elkigye Quiq — Apialid;, i=N—1N~-2.,1L

Note that #;, i =0, 1, 2,..., N may be computed alternatively as

hi o= —[ki108: + Fonal
The relation between these two algorithms can be easily found. They are given by

R'i == _771/61 B
(22)

Sz' = gl—l[gldl - niF:,i,L]_], l = 0, 1, 2,..., N.

The discrete invariant-imbedding algorithm is more compact; it has a lesser storage
requirement but, essentially, maintains the same operation counts. In general, by
virtue of Eq. (22) and the results of BabuSka [14], the invariant-imbedding algorithm is
expected to be stable whenever the L U-decomposition algorithm is stable.

Initial Estimates

To initiate Newton’s scheme at t = ¢, , we use the previous values at ¢t =1¢,_, .
A first-order forward Euler formula predicts the initial estimate for S;*, called (§;%)°.
Because S;* 2= 0 for all i and #», (S;7)° is set to zero if the computed value is negative.
They are then substituted into Eq. (11) along with 7, evaluated at ¢t = #,_, to yield
the initial estimates of 7,*, called (73™)°. In turn, Eq. (15) is solved using (7;%)® and
{S7)°. To avoid solving a nonlinear, two-point boundary-value problem, we evaluate
the gaseous specific heat C and the heat-transfer coefficient /4 at 1 = ¢,_; and solve
the resultant linear problem for (7 ,)°. The discrete invariant-imbedding algorithm is
applied toward its solution.

Truncation of Computational Domain

Physically, the retorting front propagates with a finite speed and spreads in time,
exhibiting a wavelike structure. An efficient computational algorithm takes advantage
of this in truncating the computational domain. Determining the criterion for truncat-
ing the domain requires insights into the structure of the solution, particularly the
solution ahead of the decomposition or retorting front.

Because the rate expression in the decomposition reaction is of the Arrhenius
type and the solution has wavelike behavior, we expect that, at a given time ¢, there
is a point z = z(¢) such that S(z, t) ~ S(z, 0) for z > Z. This is to say that the solid
species S has not yet decomposed appreciably. From the gas-species conservation
equation, it follows that the flow is fixed at G(zZ, t). Moreover, if the specific heat C,
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the heat-transfer coefficient %, and the heat conductivity k, are weak functions of their
respective temperature, the following approximate equations result:

oT 3h
PSCS“EE =7 (T, — Ts),
0
7] T, oT, 3h @3)
g _ g & .
ke —CC5 T ro (T = T3

for z > z(¢) and ¢ > 0. The equations are linear. Using the wave-front analysis of
Whitham, [17] we find that the wave-front propagates with a speed

G
14 SCSGL ?

Vs
and, in the neighborhood of the wave-front, the solution is governed by

(24)

3hoe 0T, {CG [ 3hk, 1 ] 2T, k, &T,
= 2

ro 0t Vs Cspsty  vs og? +7’—SE ogs ’

where ¢ =t — z/vg. We may solve Eq. (24) to set up a truncation criterion. The
solution of Eq. (24) having the desirable property is given by

Ty&, 1) = 52 [ exp(—(okt + iBY 1 + k) G-

= To} — Ay [0t B —EBt) ™D, (25)
where
CcG 3hk, 1 3hoy
%o _‘( Vs Cspsr(, Vsz )( o ) ?
3hay
ﬁ() == ke (Vs2 0‘) s

A, . = the generalized Airy function.

3,2

The relation in Eq. (25) is valid away from z = L. A possible criterion may be to
truncate the computational domain when

T, .z _
—-To EH=1+¢
or to find & such that

%_{_ € = A«[3,2[(¥Otllsﬁé—2/3, __g(lgot)—lls]'
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Unfortunately, to apply this criterion we need to compute the generalized Airy function
of indices 3, 2 or to have a table of this function [18]. Neither of these techniques is
acceptable computationally. The former requires additional computation time, while
the latter puts demands on storage. It would be desirable to do the truncation estima-
tion within the computational algorithm.

in view of this discussion, it is clear that the truncation of domain must occur for
S ~ S, in that portion of the domain where no appreciable decomposition takes
place. Let this be called De , e, I) ={x,t S(x, t) =S5(x,0) - e} with €5 > 0.
During the calculation of thc mltlal estimates for S;* — (S,")". we can determine
DSS , which approximates DCS , Le.,

DSS = {l, n| (Sin)o =S° + e}

The next step is to derive a meaningful criterion to determine the cutoff.
During the third stage of the prediction cycle, we use the discrete invariant-
imbedding algorithm to solve a two-point boundary-value probiem for

I,
Le.,

(T = Ri(Pin)O S,

Ri = (2 + gKi—l.r”z — [CGi—l,’2 -

3a AZ 3x AL

, o
X (CGi—-l."Z + 2, Ricyo b Kicym 70 Kisiia T hiqml 1) . (26)
3x Az 5
S M ot CGy— 2242 18
Sy ([Kz—-lr._ FCGiyp 2r, /71—1..] Sy
, 3x Az "
+ iR+ 1] “‘d‘ —— heao(T5,,)° %
. 3adz , 3x 4z ,
X [CGi—l T ""27 My 5 Kisye + Kipoe —f"n J . (27)

fre_ 1/"R7 1 1](P 1)0 - [Ki—_l,’2Ri - IJ(P—,,I)U K :(57 - Si--x),

I —= 17\‘—. N — 1,..~. 15 (28\’
with

and (P =

Here,
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The solutions of Egs. (27) and (28), with their associated initial conditions, are given by

and

where

i1 i -
S; == g(t™) I_[ a; -i- e;_y -+ Z €;_j [n a;__ 1]’ 0<i<N, 29
i=0 i=2 =0
Nei k-2
Pi == dz'll | di+2Ci-:-1 — Z dz'-o-k [H Ci---lﬂ:" 0 <\\ i< N’ (30)
K=3 1~0
3x 4z _
a, = (Kim-z 1- CGiyape — 2—% hi—l/Z) Vi L
3 dz -
=, bl T
, 3ad:z
y: = K00 T CGrigee - T hiyiell + 26,402R:),
o Ki:_]/"zRi ““__1__
C: = Ki1aRi 1 + 1’
d; - _’fz_lm -8, 4]
;1R +1 [ !

Equation (30) suggests the following dynamic truncation algorithm:

()

@
3

@
(Clearly,
with n.)

Solve Eqs. (26) and (27) for i = 1, 2,..., N, where N is determined by
| Sve — Snear | < ec and chje,

Continue solving Egs. (26) and (27) to i = N - N
Find the initial condition for the backward recursion of Eq. (28) with

k2
(PI\C)O - d’\c-—l T dN -‘ZC’\Ic+l _7_ z ch*k [n C’Vch l] (3])

Terminate the subsequent iterative solution at i == N, with APN =0.
because of the traveling wavelike behavior of the solution, N, changes

An a priori error estimate can be obtained connecting the error ¢, with the trun-
cating error associated with Eq. (31). To derive the error estimate, the thermodynamic
and transport coefficients must be weak functions of the temperature. However, the
derivation is lengthy and will not be presented here, although it shows that Eq. (31)
gives a reasonable approximation. In general, computational experiences in the next
section indicate that the proposed domain-truncation algorithm works,
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Numerical Examples

For convenience in computing the example problems, we assume constant gas
specific heat, constant heat-transfer coefficient, constant effective axial heat conduc-
tivity, and a specific heat for the solid that is a linear function of the solid temperature.
The values of the constants are:

G, == 0.01 kg/m? sec,
n = 8 Jjm? Ksec,
C = 1000 J/kg K,
po 7= 1916 kg/m?3,
Cs = 827.4 -+ 0.922 (T — 298.) J/kg K,
k(T) = 2.81 x 10'® exp{—26389/T} sec™?,
k, = 0.25 JjmKsec,

Jfi = 0.15,

by, —= 3.7 x 10° Jjkg,
ro = 0.01 m,

a = 0.57,

Sy(2) == 314 kg/m?®.

A series of problems is solved to assess the effectiveness of the domain truncation
algorithm, particularly with the influences of g and N, . The results illustrating the
effect of g with N, fixed at 10 are summarized in Table I. The effects of varying N
when e is fixed are shown in Table 1I. From Tables I and II, we see that the value
of the temperature gradient P at the domain-truncation point is a function of g,
provided N, is large enough that the asymptotic value is reached. For the example
problems, N == 10 gives three-place accuracy to the asymptotic value.

TABLE |

Results of the Domain Truncation Algorithm Showing the Effect of e When N Is Fixed at 10 and
L =15 NZ -- 150, 4¢ -- 300, and ¢ = 6000

e Ne N P(56) P(64) P(72) P(79)
103 10 56 —7.187 x 10+

10-4 10 64 7389 x 100+ —-7.165 x 103

10-5 10 72 —7373 x 100 —7.456 x 105 —6.710 x 10~

10 ¢ 10 79 —7371 x 10 - .7.438 x 107 —7.104 x 10-5  -~8.268 x 107

No domain truncation —7.370 x 104 —7.435 x 10 —-7.073 x 10-¢ --8.672 x 1077
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TABLE 11

Results of the Domain Truncation Algorithm When N¢ Is Varied, es Is Fixed,
and L = 1.5, NZ - - 150, 4¢t = 300, and ¢ = 6000

Ne¢ €s Ne P(64)
2 101 64 —6.064 x 1073
4 10 64 —6.996 x 103
6 104 64 —7.139 x 103
8 10— 64 - 17.161 x 1073
10 101 64 —7.165 x 103
No domain truncation —7.435 x 10-%

Heuristically, this result is expected from Eq. (31) if {C;| <<l and :d;,,! =
0(l d; 1), i = N . Indeed, for the case in Table 11,

C; = —0.6037, i 2 N¢
and

dng > dngyy > -+ > 0.

The effects of changing the spatial and time-step sizes on the domain truncation with
a fixed e = 10~* and N, —= 10 are illustrated in Table ITI.

TABLE 1II

Effects of Changes in the Spatial and Time-Step Sizes on thc Domain Trunction
Algorithm When N¢ = 10, es = 1074, and 1 -= 6000

NZ At Nc P CN

c
150 300 64 -7.538 x 10 -0.6037
150 600 64 - 5951 x 10°? —0.6037
300 300 123 1.671 x 10 ¢ -0.3376
300 600 122 —-1.515 x 10 -0.3378

To demonstrate the solution behavior of the model equations, a number of calcula-
tions are made. Figures 1 through 3 give the gas-temperature profiles, solid-tempera-
ture distribution, and the solid-specics profile at ¢ = }, §, and 1 day, respectively.
To show the difference in scales inherent in the chemico-physical processes, we plot
the gas-temperature profile, solid-temperature distribution, and the solid-species
profile at ¢ == 1 day in Fig. 4. The domain-truncation point is located at i == 274 or
z = 1.37 m. We see from the figures that the solid decomposes within a narrow
temperature range 600 to 725 K. Because of the endothermic nature of the decomposi-
tion process, the temperature profiles, gas and solid, become smoother in that tempera-
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solid-species profile at

ture range. On the other hand, if the chemical process is exothermic, the temperature
variation would steepen from the added chemical energy. In turn, the local species
variation will undergo a more drastic change. This case will be a severe test for any
numerical scheme, including the present one.
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CONCLUSION

We have developed a numerical scheme for modeling specific retorting processes
in a rubblized bed of oil shale with a chemically reacting porous medium flow. A
nonlinear discretization of the species rate equation is central to the development of
the numerical method in recognition of the rapid variation induced by the temperature-
dependent decomposition rate. This circumvented the stiffness inherent in the equa-
tions with a scheme that uses a fixed step size commensurate with the smooth tempera-
ture variation yet also accurately evaluates the rapidly varying species profile.

The numerical method also uses a discrete analog of the invariant-imbedding
algorithm for second-order, two-point boundary-value problems o solve the lincar
system induced by Newton’s method. The discrete invariant-imbedding algerithm
is further exploited to develop a dynamic domain truncation scheme to increase
efficiency.

We have also demonstrated the efficiency of the proposed numerical method by «
series of computations that show the scheme is accurate and efficient.
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